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A Note on Dynamics in the Modal Interpretation

Guido Bacciagaluppi1
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I summarize recent results about the construction of a dynamics in the modal
interpretation. Some properties of the resulting dynamics are reviewed.

1. INTRODUCTION

In this brief note, I wish to summarize the content of my contribution
to the IQSA meeting in Berlin. These results are published in fuller form

elsewhere (Bacciagaluppi and Dickson, 1997; Bacciagaluppi et al., n.d.;

Bacciagaluppi, 1998). (The last paper is mainly a review article, covering

most of the work done on this topic.)

I treat the question of finding a dynamics for the modal interpretation

in the version of Kochen (1985), Dieks (1988, 1989), and Healey (1989), as
generalized by Vermaas and Dieks (1995). In this interpretation, the spectral

decomposition of the reduced state r of a system plays a privileged role, in the

sense that the complete state of the system is considered to be a pair ( r , Pi) in

which Pi is one of the eigenprojections of the reduced state r , and it is postulated

to occur with probability Tr( r P i) when the state is r . The question thus arises

of formulating a (stochastic) dynamics for the evolution of the possessed proper-
ties (hidden variables) P i. This dynamics will have to respect also the single-

time distributions for different systems *1 J . . . J *N,

p (P 1
i1, . . . , P N

iN) : 5 Tr( r P 1
i1 ^ ? ? ? ^ P N

iN) (1)

characteristic of the Vermaas±Dieks (1995) version.

The construction of such a dynamics is obtained by generalizing the

dynamics sketched by Bell (1984) and more fully discussed by Vink (1993),
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which is a stochastic version of the dynamics of the Bohm (1952) theory, in

which, however, not position, but some discrete observable is given the

privileged status of a beable.
In the context of the modal interpretation, the analogy with the Bohm

theory has been stressed by Bub (1992, 1994), who has set up a framework

for modal interpretations understood as Bohm-like theories with a discrete

privileged observable R instead of the positions of the particles. [The definitive

paper on this framework is Bub and Clifton (1996).] Bub (1995) has also

adopted Bell’s (1984) dynamics as developed by Vink (1993). Within Bub’ s
framework, we can fit the Vermaas±Dieks (1995) version of the modal inter-

pretation by taking not the positions of the particles to be privileged, but the

observables with the eigenprojections P j
ij (i.e., the reduced states r j of the

particles), so that the products of the P j
ij define the eigenprojections [in the

following simply denoted as Pi(t)] of a time-dependent privileged observ-

able R (t).
Implicit in the above are the following two ideas. (A) The assignment

of properties to a system via the spectral decomposition of its reduced state

is not applied to composite systems, since the resulting properties would

generally not commute with the properties of the component systems, and

this would make it impossible to define a privileged observable R (t). This
seems to be required anyway by a series of recent no-go theorems directed

against the possibility of simultaneously assigning properties also to other

systems (Bacciagaluppi, 1995; Clifton, 1996; Vermaas, 1997). See also the

review by Bacciagaluppi and Vermaas (1998), and the discussion of the

resulting theory by Dieks (1998).

(B) The P i (t) at different times must somehow be identifiable as the
same Pi that have evolved over time. The need for the existence of such

trajectories will become clearer in the actual construction of the dynamics

[where, in fact, the trajectories Pi (t) need to be differentiable]. The question

of the time evolution of the Pi (t) has been treated by Bacciagaluppi et al.
(1995), who, using quite standard theorems of perturbation theory, identify

conditions under which the Pi (t) form even analytic trajectories (or more
precisely, trajectories that possess analytic continuations). In the following,

we shall assume that such conditions hold. In fact, although we shall not go

into details, we shall assume the strongest such condition, namely that the

total Hilbert space be finite-dimensional, which also simplifies the discussion

in other respects.

2. CONSTRUCTION

A sketch of the dynamics can be given as follows. In the case of a

discrete Markov process (and if we consider large enough and thus closed
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systems, the assumption of the Markov property will be warranted), one can

reconstruct the (multitime) distribution functions of the process from its (two-

time) transition functions pji (t, s), representing the transition probability from
the state i at time s to the state j at time t . s. Further, one can in turn

recover the transition functions from the so-called infinitesimal transition

probabilities or growth rates tji (t) by standard techniques (Kolmogorov, 1931;

Feller, 1940). One can thus specify a dynamics in terms of the growth

rates tji (t).
In the Bell±Vink dynamics one sets

tji(t) : 5 max H 0,
jji(t)

pi (t) J (2)

where, assuming that the state of the total system is ^ C (t) & , pi (t) is the single-

time distribution

pi (t) : 5 ^ C (t) | P i | C (t) & (3)

and jji (t) is a probability current, given by

jji(t) : 5 2 Im[ ^ C (t) | PjHP i | C (t) & ] (4)

From the SchroÈ dinger equation, one sees that (4) satisfies the following

continuity equation:

pÇ j (t) 5 o
i

jji(t) (5)

Vink (1993) has shown that this dynamics reduces to that of the Bohm theory

in the appropriate continuum limit. However, there are many more dynamics

that are consistent with the given single-time distributions (3). Instead of (2)

one can take any solution of the equation

jji(t) : 5 tji(t)pi (t) 2 tij(t)pj (t) (6)

and for jji (t) any solution of the continuity equation (5) that is antisymmetric

in j and i [cf. (6)].

The generalization to the time-dependent case (Bacciagaluppi and Dick-

son, 1997), in which Pi (t) becomes time-dependent and

pj (t) 5 ^ C (t) | Pj (t) | C (t) & (7)

is obtained by adding an appropriate term to the current (4):

jji(t) 5 2 Im[ ^ C (t) | Pj (t)HP i (t) | C (t) & ]

1 ^ C (t) | PÇ j (t)P i (t) 2 PÇ i (t)P j (t) | C (t) & (8)
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[The choice of the extra term is highly nonunique, but is argued for by

Bacciagaluppi and Dickson (1997) and Bacciagaluppi (1998).] Using again

(2), this current yields infinitesimal transition probabilities and thus the desired
generalization of the dynamics to the time-dependent case.

It should be noticed, however, that as discussed by Bacciagaluppi and

Dickson (1997) and Bacciagaluppi (1998), whenever the pi (t) have a zero,

the tji(t) become singular, by (2). (Indeed, one can show that they have a

nonintegrable singularity.) As a consequence, the regularity assumptions for

the existence and uniqueness of solutions to the Kolmogorov equations (Feller,
1940) are violated. The situation is quite similar to that of the Bohm theory,

in which the guidance equation will also become singular when the wavefunc-

tion is zero. In the Bohm theory it has been shown that the guidance equation

admits unique solutions for wide classes of potentials and generic initial

conditions (Berndl et al., 1995). It is plausible that similar results can be

obtained also in the case of the (generalized) Bell±Vink dynamics.

3. PROPERTIES OF THE DYNAMICS

I shall conclude by mentioning a few properties of the dynamics sketched

above (which also give a partial justification for the particular choice of a
solution), with particular reference to the analogy with the Bohm theory.

First of all, one can show that whenever the possessed properties of one

particle commute with the interaction Hamiltonian during an interval [s, t],
then the possessed properties of that particle are stable, in the sense that they

undergo no stochastic transitions in that time interval (Bacciagaluppi and

Dickson, 1997; Bacciagaluppi, 1998).
This is a generalization of the analogous result for freely evolving

systems derived by Vermaas (1996). As a consequence, one can rederive

some further results by Vermaas (1996) for special cases of interacting systems

(cases in which at one time the properties of one particle are perfectly

correlated with the properties of some other, freely evolving, particle). In

particular, one can then easily show by example that: (a) two-time transition
probabilities by no means always have the form of the transition probabilities

of the projection postulate (although in some cases they do); (b) the evolution

of open systems is in general non-Markovian.

The stability result just mentioned can also be used to analyze properties

of the dynamics in toy models of measurement, as done by Bacciagaluppi

and Hemmo (1998) and by Dickson and Clifton (1998). The former explain
the mechanism of state preparation in the modal interpretation for such

models, and analyze how in the models the modal interpretation behaves like

a stochastic hidden variables theory. The latter show that the probabilities in

any dynamics that exhibits stability (in the above sense) must violate funda-
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mental Lorentz invariance, in the sense that they will be frame dependent.

One obtains frame dependence of actual trajectories of possessed properties

as in the Bohm theory. Dickson and Clifton (1998) also discuss the emergence
of Lorentz invariance at the phenomenological level.

Finally, the existence of a dynamics that explains how the probability

distribution over the definite properties at time t is mapped to the probability

distribution at time t8 clarifies the status of these single-time distributions as

purely epistemic, again as in the Bohm theory. However, while in the Bohm

theory, which is deterministic, a `correct’ initial distribution may perhaps
need to be postulated, in the stochastic dynamics sketched above it can be

derived, in the sense that it can be shown that for any distribution di (t) other

than (7),

d

dt o
i

| di (t) 2 pi (t) | # 0 (9)

Whether this leads, indeed, to convergence of the two distributions and how
quickly depends further on the presence of sufficient interactions (Bacciaga-

luppi et al., n.d.). But this result can be interpreted as indicating that an initial

distribution need not be introduced in the theory as a postulational element.
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